
In this second part of lecture series focused on epidemiologic and biostatistical
methods related to disease screening, we will define and learn how to compute 
quantitative measures of accuracy, including sensitivity, specificity, and likelihood 
ratios.
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After viewing this segment, you will be able to define and compute quantitative 
measures of accuracy, including sensitivity, specificity, and likelihood ratios.
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Let’s now discuss some of the primary measures that are used to quantify the 
accuracy of screening tests.

3



In this module, we will discuss measures of accuracy or validity, including sensitivity 
and specificity. In addition, we will discuss measures of precision or reliability, 
including percent agreement.
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We will first focus on validity, or accuracy, of the screening test.

Accuracy relates to the ability of the test to distinguish between those who have the 
disease and those who do not have the disease.

Sensitivity quantifies the ability of the test to correctly identify those who have the 
disease. Sensitivity is the probability of a disease case being correctly identified by the 
test. Or in other words, the probability that a person with the disease will test positive 
based on the screening test.

Specificity quantifies the ability of the test to correctly identify those who do NOT 
have the disease. Specificity is the probability of a person without the disease being 
correctly identified by the test. Or in other words, the probability that a person 
without the disease will test negative based on the screening test.
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In order to quantify the accuracy or validity of a screening test, we need to know the 
“true” disease state of the patient. The “true” state is typically indicated by the gold 
standard test. Then, we need to know the test results from the index screening test. 
To quantify the accuracy, we will compare the results of the index screening test to 
the results from the gold standard test.
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This 2 by 2 table is helpful for summarizing our measures of accuracy.

The columns correspond to the true disease status of the patient based on the gold 
standard test. There are a total of (a+c) diseased participants and (b+d) participants 
without disease. In addition to the true status of the patients, we also know the index 
test results. The index screening test classifies participants as positive or negative 
based on the screening test results. In terms of our notation, we have (a+b) 
participants with positive screening test results and (c+d) participants with negative 
screening test results.

For some participants, there is agreement between the test results and the true 
disease status of the participant.

• Participants who have the disease and have a positive screening test result are 
true positives.

• Participants who do not have the disease and have a negative screening test 
result are true negatives.

For some participants, the screening test result does not agree with the true disease 
status of the participant.

• Participants who do not have the disease but have a positive screening test result 
are false positives.

• Participants who have the disease but have a negative screening test result are 
false negatives.
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Now, let’s use this 2 by 2 grid to define our quantitative measures of accuracy.

We defined sensitivity as the probability of a positive screening test among those who 
truly have the disease.

Based on our notation, there are (a+c) participants who truly have the disease. The 
denominator for sensitivity is therefore (a+c). Then, the numerator is the number of 
diseased participants who screen positive. In terms of our notation, this is (a). 
Therefore, sensitivity is calculated as (a)/(a+c).

In terms of probability notation, sensitivity is the probability of a positive test among, 
or conditioned, on those truly having the disease. The (|) notation is a symbol for a 
conditional probability or a probability calculated among a subgroup or among 
participants who meet a certain condition, in this case, conditioning on those who 
truly have disease.
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We defined specificity as the probability of a negative screening test among those 
who truly do NOT have the disease.

Based on our notation, there are (b+d) participants who truly do NOT have the 
disease. The denominator for specificity is therefore (b+d). Then, the numerator is the 
number of nondiseased participants who screen negative. In terms of our notation, 
this is (d). Therefore, specificity is calculated as (d)/(b+d).

In terms of probability notation, specificity is the probability of a negative test among, 
or conditioned, on those truly without the disease. The (|) notation is a symbol for a 
conditional probability or a probability calculated among a subgroup or among 
participants who meet a certain condition, in this case, conditioning on those who 
truly do not have disease.
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Now, let’s consider a data example.

In this case, we have 1000 participants, among whom, 900 are non-diseased and 100 
are diseased based on the gold standard assessment. Our screening test identifies 180 
participants as positive and 820 participants as negative.

To calculate sensitivity, we focus on the 100 participants who truly are diseased. 
Among these, 80, or 80%, screened positive based on our test. The sensitivity is 80%.

To calculate specificity, we focus on the 900 participants who truly are non-diseased. 
Among these, 800, or 89%, screened negative based on our test. The specificity is 
89%.
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After calculating the values, we can interpret the results.

The calculated sensitivity is 80%. This means that the test is able to correctly 
identify 80% of those with the disease.

The calculated specificity is 89%. This means that the test is able to correctly 
identify 89% of those without the disease.

In conclusion, the screening test is fairly good at correctly identifying as 
negative those without disease (false positive is low relative to true negative); 
however, the screening test fails to pick up 20% of those with disease.

Given that the false positive error is low, we can state that this test is fairly 
good at “ruling in” disease.



12

We can also calculate the false positive rate, which is defined as the proportion of the 
truly non-diseased who are incorrectly classified as diseased by the screening test.

The denominator is the total number of non-diseased participants (b+d) and the 
numerator is the number of false positives (b). We can show that the false positive 
rate is equal to 1 minus the specificity. In our data example, specificity was 89% so the 
false positive rate is 11%. Or, calculating this quantity directly, the false positive rate is 
100 false positives divided by 900 participants without disease.
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In practice, we want the sensitivity and the specificity both to be high; however, we 
are often faced with a situation where one characteristic is increased at the expense 
of the other. For example, if we are particularly concerned about false positive results, 
that lead to unnecessary, expensive diagnostic testing and cause a large amount of 
stress to the patient, we may want to target a test that is more specific at the expense 
of having a lower level of sensitivity (a higher false negative rate).

In practice, it is possible to vary sensitivity and specificity by changing the level at 
which a test is interpreted as positive. For example, changing the cut-point of an oral 
glucose tolerance test that is used to screen for gestational diabetes.



A test with high sensitivity is one that has sensitivity that approaches 1. Because 
sensitivity is high, the false negative fraction will be low compared to the true positive 
fraction and therefore, a highly sensitive test is useful for ruling out disease (i.e., the 
false negative fraction is low so a negative test is likely a true negative and not a false 
negative). A sensitive test is particularly useful for screening tests in settings with a 
low disease prevalence.
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A test with high specificity is one that has specificity that approaches 1. Because 
specificity is high, the false positive fraction will be low compared to the true negative 
fraction and therefore, a highly specific test is useful for ruling in disease (i.e., the 
false positive fraction is low so a positive test is likely a true positive and not a false 
positive). A specific test is particularly useful as a confirmatory test after a positive 
screening test.

For example, in HIV testing, we initially use a screening ELISA test that is sensitive but 
has a high false-positive rate and therefore, low specificity. Then, this low specificity 
screening ELISA test is followed by a confirmatory Western blot test, useful for ruling 
in disease, that has high specificity and a low false positive rate, but is lower in terms 
of sensitivity and has a high false negative rate.
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Now, let’s discuss a new series of calculations that can be used to define the 
probability of receiving a particular screening test result, say a positive result, if the 
patient has the disease compared to the probability of receiving a particular screening 
test result, again using a positive result as an example, if the patient does NOT have 
the disease.

We will discuss two such values, a positive likelihood ratio and a negative likelihood 
ratio value.
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The positive likelihood ratio (PLR) value is the probability of a positive test among the 
disease participants divided by the probability of a positive test among non-diseased 
participants. A value greater than 1indicates that those with the disease are more 
likely to have a positive test compared to those without the disease.

The negative likelihood ratio (NLR) value is the probability of a negative test among 
the disease participants divided by the probability of a negative test among non-
diseased participants. A value less than 1indicates that those with the disease are less 
likely to have a negative test compared to those without the disease.
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Let’s consider our same data example.

In this case, the positive likelihood ratio value is the probability of a positive test 
among those with disease (0.8) divided by the probability of a positive test among 
those without disease (0.11) resulting in a value of 7.27.
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Using the same data example, the negative likelihood ratio value is the probability of a 
negative test among those with disease (0.2) divided by the probability of a negative 
test among those without disease (0.89) resulting in a value of 0.22.
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Now, let’s interpret the calculated values.

A positive likelihood ratio value of 7.27 means that patients with the disease are 7.27 
times as likely to have a positive test result compared to participants without the 
disease. In other words, there is a 6.27-fold increase in the probability of a positive 
test result for participants with the disease compared to those without the disease.

A negative likelihood ratio value of 0.22 means that patients with the disease are 0.22 
times as likely to have a negative test result compared to participants without the 
disease. In other words, there is a 78% reduction in the probability of a negative test 
for subjects with the disease compared to those without the disease.
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It is helpful to note that the positive likelihood ratio is related to the post-test odds of 
disease.

The positive likelihood ratio indicates the value of the test for increasing certainty 
about a positive diagnosis.

If we consider a particular disease with prevalence in the population of Prob(D), we 
would predict that a given patient has the disease with the probability equal to the 
prevalence of disease. With no screening test or diagnostic testing information 
available, we would predict that everyone has the same probability of disease, which 
is equal to the overall prevalence of disease. If a screening test is useful, however, we 
can improve our prediction of disease using information from the screening test.

We will define the pre-test odds of disease as the probability of disease divided by (1 
minus the probability of disease). This utilizes the definition of odds (p divided by [1-
p]) and the estimated probability of disease based on the disease prevalence alone.

Then, if we have a useful screening test result, we can improve our prediction of 
disease and calculate the post-test odds of disease as the odds of disease conditioned 
on, or among those, with a positive test result.

An algebraic result is that the post-test odds of disease is equal to the pre-test odds of 
disease multiplied by the positive likelihood ratio.

If the test is useful, the post-test odds of disease, determined among those who 
screen positive, should be higher than the pre-test odds of disease, which is 
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calculated for the entire population without regard to the test result.
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If we return to our data example, the positive likelihood ratio value is 7.3.

The prevalence of disease is 100 (true disease cases) divided by 1000 participants and 
is equal to 0.10.

The pre-test odds of disease is 0.1/0.9 = 0.11. The pre-test odds of disease reflects 
only the overall prevalence of disease and no additional information.

The post-test odds of disease is found by multiplying the pretest odds of disease 
(0.11) by the positive likelihood ratio (7.3), resulting in a value of 0.80.

Given a positive test result, the odds of disease are much higher than what we would 
predict based on prevalence alone.
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In conclusion, we have learned how to calculate sensitivity, specificity, and the 
positive and negative likelihood ratio values as measures of accuracy. In the next 
section of this module, we will discuss approaches for calculating accuracy measures 
for a diagnostic test with a continuous result, for example, the value from an oral 
glucose tolerance test, and will learn about positive and negative predictive values 
that can also aid in the evaluation of a diagnostic or screening test.
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